HMG-CoA reductase regulation: use of structurally diverse first half-reaction squalene synthetase inhibitors to characterize the site of mevalonate-derived nonsterol regulator production in cultured IM-9 cells.

نویسندگان

  • S F Petras
  • S Lindsey
  • H J Harwood
چکیده

The activity of HMG-CoA reductase (HMGR) is tightly regulated, in part through post-transcriptional mechanisms that are mediated by nonsterol products of mevalonate metabolism. Previous reports have suggested that these mediators are derived from farnesyl pyrophosphate (FPP). Recent studies have implicated FPP hydrolysis products (e.g., farnesol), the squalene synthetase (SQS) reaction products presqualene pyrophosphate (PSQPP) and squalene, or their metabolites. To distinguish among these possible mediators, we evaluated the ability of HMGR and SQS inhibitors to induce compensatory increases in HMGR activity in cultured IM-9 cells. Mevinolin (HMGR inhibitor) produced predicted increases in HMGR activity that were related to the degree of cholesterolgenesis inhibition (e.g., 4-fold, 9-fold, and 17-fold increases relative to 50%, 76%, and 90% inhibition, respectively). By contrast, a variety of structurally distinct reversible, competitive, first half-reaction SQS inhibitors all reduced cholesterolgenesis by up to 90% with no appreciable increases in HMGR activity. These observations strongly suggest that nonsterol-mediated post-transcriptional mechanisms regulating HMGR activity remain intact after SQS first half-reaction inhibition, indicating that nonsterol regulator production is independent of SQS action and ruling out PSQPP, squalene and their metabolites as possible mediators. Unexpectedly, the SQS mechanism-based irreversible inactivator, zaragozic acid A (ZGA) exhibited the greatest degree of HMGR modulation, producing 5-fold, 11-fold, and 40-fold increases in HMGR activity at concentrations that produced 25%, 50%, and 75% cholesterolgenesis inhibition, respectively. The markedly greater magnitude of HMGR stimulation by ZGA versus mevinolin at similar levels of cholesterolgenesis inhibition suggests that ZGA may directly interfere with the production or action of the nonsterol regulator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of squalene epoxidase in HepG2 cells.

Regulation of squalene epoxidase in the cholesterol biosynthetic pathway was studied in a human hepatoma cell line, HepG2 cells. Since the squalene epoxidase activity in cell homogenates was found to be stimulated by the addition of Triton X-100, enzyme activity was determined in the presence of this detergent. Incubation of HepG2 cells for 18 h with L-654,969, a potent competitive inhibitor of...

متن کامل

Sterol-independent regulation of 3-hydroxy-3-methylglutaryl-CoA reductase by mevalonate in Chinese hamster ovary cells. Magnitude and specificity.

In this paper, we assess the relative degree of regulation of the rate-limiting enzyme of isoprenoid biosynthesis, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, by sterol and nonsterol products of mevalonate by utilizing cultured Chinese hamster ovary cells blocked in sterol synthesis. We also examine the two other enzymes of mevalonate biosynthesis, acetoacetyl-CoA thiolase and HM...

متن کامل

Feedback regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in livers of mice treated with mevinolin, a competitive inhibitor of the reductase.

Compactin (ML-236B) and the related compound, mevinolin, are competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG CoA reductase), the rate-controlling enzyme in cholesterol synthesis. Previous studies have shown that administration of compactin to cultured cells elicits a compensatory increase in the amount of HMG CoA reductase in the cells. A similar increase in HMG C...

متن کامل

Effect of a novel squalene epoxidase inhibitor, NB-598, on the regulation of cholesterol metabolism in Hep G2 cells.

We have reported previously that NB-598 competitively inhibits human squalene epoxidase and strongly inhibits cholesterol synthesis from [14C]acetate in cultured cells. Furthermore, multiple oral administration of NB-598 decreased serum cholesterol levels in dogs (Horie, M., Tsuchiya, Y., Hayashi, M., Iida, Y., Iwasawa, Y., Nagata, Y., Sawasaki, Y., Fukuzumi, H., Kitani, K., and Kamei, T. (1990...

متن کامل

Molecular cloning, developmental pattern and tissue expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase of the cockroach Blattella germanica.

In insects, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA) synthesizes mevalonate for the production of nonsterol isoprenoids, which are essential for growth and differentiation. To understand the regulation and developmental role of HMG-CoA reductase, we have cloned a full-length HMG-CoA reductase cDNA from the cockroach Blattella germanica. This cDNA clone was isolated using as a p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of lipid research

دوره 40 1  شماره 

صفحات  -

تاریخ انتشار 1999